Talend España : Madrid – Alicante – Barcelona – Valencia   Talend Expert es el especialista de la aplicación de la integración de datos, grandes volúmenes de datos y proyectos de gestión de datos maestros utilizando Talend. Somos una empresa de consultoría de Talend la confianza de las empresas líderes en el mundo. Una empresa de

Impala helps you to create, manage, and query Parquet tables. Parquet is a column-oriented binary file format intended to be highly efficient for the types of large-scale queries that Impala is best at. Parquet is especially good for queries scanning particular columns within a table, for example to query “wide” tables with many columns, or

Symptoms :   [WARN ]: org.apache.spark.scheduler.TaskSetManager – Lost task 0.0 in stage 6.0 (TID 14, clouderadXXXXX): java.lang.NullPointerException at parquet.column.values.fallback.FallbackValuesWriter.writeBytes(FallbackValuesWriter.java:161) at parquet.column.impl.ColumnWriterV1.write(ColumnWriterV1.java:204) at parquet.io.MessageColumnIO$MessageColumnIORecordConsumer.addBinary(MessageColumnIO.java:376) at parquet.example.data.simple.BinaryValue.writeValue(BinaryValue.java:45) at parquet.example.data.simple.SimpleGroup.writeValue(SimpleGroup.java:229) at parquet.example.data.GroupWriter.writeGroup(GroupWriter.java:51) at parquet.example.data.GroupWriter.write(GroupWriter.java:37) at parquet.hadoop.example.GroupWriteSupport.write(GroupWriteSupport.java:74) at parquet.hadoop.example.GroupWriteSupport.write(GroupWriteSupport.java:36) at parquet.hadoop.InternalParquetRecordWriter.write(InternalParquetRecordWriter.java:116) at parquet.hadoop.ParquetRecordWriter.write(ParquetRecordWriter.java:123) at parquet.hadoop.mapred.DeprecatedParquetOutputFormat$RecordWriterWrapper.write(DeprecatedParquetOutputFormat.java:107) at parquet.hadoop.mapred.DeprecatedParquetOutputFormat$RecordWriterWrapper.write(DeprecatedParquetOutputFormat.java:75) at org.apache.spark.SparkHadoopWriter.write(SparkHadoopWriter.scala:96) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$13.apply(PairRDDFunctions.scala:1073) at org.apache.spark.rdd.PairRDDFunctions$$anonfun$13.apply(PairRDDFunctions.scala:1059) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61) at org.apache.spark.scheduler.Task.run(Task.scala:64) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203)